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Abstract  
 
Spatial data play a key role in road safety analysis, with OpenStreetMap (OSM) offering valuable 
geospatial insights. This study presents an improved method for aggregating telematics data from a 
smartphone app into OSM entities, such as nodes and edges, to enhance road safety spatial analysis. 
The dataset used in the study consists of several trips where each instance is characterized by 
geospatial coordinate corresponding to driver locations, along with features related to driver 
dynamics. Telematics data was aggregated to edges using the nearest edge approach and to nodes 
with a buffer method, introducing inconsistencies. This refined approach constrains data points to 
edges connected to the buffer origin node, reducing node variance and creating a dataset with lower 
variance, resulting in a more structured representation. An Autoencoder was tested on the produced 
database, with the loss curve and a PCA variance distribution indicating a more consistent and 
meaningful dataset. 
 
Keywords: Road Safety, Telematics Data, OpenStreetMap, Spatial Analysis, Data Aggregation, Autoencoder 
curve, Principal Component Analysis. 

 

1. Introduction 

According to estimates from the World Health Organization (WHO), road safety remains a critical 
public health concern, with approximately 1.19 million fatalities resulting from road crashes worldwide. 
Road traffic injuries are the leading cause of death among children and young adults aged 5 to 29 
years and rank as the 12th leading cause of death globally (WHO, 2023). While road safety is a critical 
global issue, focusing on Europe, in 2022, approximately 20,600 fatalities occurred due to road 
crashes across the European Union, a 3% increase from 2021 as traffic volumes returned to pre-
pandemic levels (Road Safety in the EU, 2023).  
 
In road safety analysis, spatial data is essential for understanding the factors contributing to 
hazardous conditions (Ziakopoulos & Yannis, 2020). A widely used resource in this domain is 
OpenStreetMap (OSM), a free, editable global map created by volunteers and released under an 
open-content license (OpenStreetMap, 2025). Traditionally historical road crash data have been used 
as main indicator to measure road safety outcomes. Over the past decades, researchers have been 
exploited Surrogate Safety Measures (SSMs) as proxy measurements which can complement or 
substitute crash data, helping to address the challenge posed by the crash data rarity (Nikolaou, 
Ziakopoulos, et al., 2023). Moreover, crash-focused data are useful to explore the risk given a crash, 
but they do not support research exploring the risk of a crash itself when the risk is defined as the 
probability that exposure to a hazard (crash or being on a road) leads to a negative consequence 
(Tarko, 2018). Recently researchers integrated SSMs with spatial data for road safety analysis, as in 
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(Nikolaou, Dragomanovits, et al., 2023) who exploited road geometry data and SSMs to investigate 
various aspects of road crashes on motorway segments.  
 
The increasing availability of telematics data, captured through smartphone apps, has introduced new 
opportunities for enhancing road safety analysis. However, their applications in spatial analysis 
remain under-researched in the current literature. Several studies have exploited telematics data to 
derive Safety SSMs. Telematics data have been investigated both for their correlation with crashes 
(Stipancic et al., 2021) and for their potential to substitute crash data, when it comes to road safety 
outcomes, when combined with spatial information (Nikolaou et al., 2025), .  
 
Telematics is most used in insurance to predict claim frequency, improving upon classical models, 
with intense use of machine learning and regression techniques (Boylan et al., 2024). Some studies 
have explored the potential of integrating telematics data into structured graph to enhance the 
analysis of driving behavior and road safety (Stipancic et al., 2019). 
 
Furthermore, thanks to telematics and the latest technological advancements, insurance companies 
have developed Usage-Based-Insurance (UBI) schemes. These are schemes where the insurance 
rate is affected by their driving behaviour instead of traditional auto insurance pricing factors only, 
such as driving experience, vehicle type, etc., promoting improvements in society by encouraging 
better driving behavior among the population, leading to long-term crash reductions and 
environmental benefits through reduced fuel consumption and emissions (Ziakopoulos et al., 2022). 
 
This study presents an approach to aggregating telematics data to the graph generated by querying 
OSM via OSMnx, which is a Python library that downloads and analyzes street networks for anywhere 
in the world from OSM. With a single line of code, you can query data by bounding box, address, or 
place name, and specify network types such as drive, walk, bike, and more (Boeing, 2017). The output 
is a graph representation of the street network. Such graphs are accompanied by two datasets: one 
for the nodes and another for the edges. The proposed approach focuses on presenting a clearer 
method for aggregating telematics data points to a single node or edge in the OSM-derived graph. 
 
An Exploratory Data Analysis (EDA) was conducted to gain insights into different aggregation 
methods. Techniques such as Principal Component Analysis (PCA) and an Autoencoder (AE) were 
utilized to further explore the data, aligning with the recent surge in machine learning and deep 
learning models in road safety (Silva et al., 2020). By combining the insights gained from the dataset 
variance, the explained variance from PCA, and the ease of input reconstruction from the AE, a 
conclusion was drawn. 
 
The structure of the paper is as follows: After this Introduction, the Main Text includes the Methods 
section presenting the processing of data along with the chosen models. In the Results section the 
models are analyzed, and performances are compared. In the Discussion the findings are interpreted, 
and an overview of the results is provided; finally, the study is summarized and some takeaways are 
highlighted in the Conclusion section. 

2. Main Text 

2.1 Methods 

The methodology of the paper is centered on the analysis of telematics data obtained from a 
smartphone application developed by OSeven Telematics (OSeven, 2025), that records driver 
behavior using smartphone hardware sensors.  
 
The OSeven app collects highly disaggregated in space and time. They are stored in the backend 
cloud server, and signal processing, Machine Learning (ML) algorithms, Data fusion and Big Data 
algorithms are used to transform raw data into driving behavior indicators. This is achieved by using 
state-of-the-art technologies and procedures and operating in compliance with standing Greek and 
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European personal data protection legislation (GDPR) (Kontaxi et al., 2022). The overall flow system 
is illustrated in Figure 1. 

 

 
Figure 1: OSeven data flow system. 

 
The dataset used in the current study consists of anonymous trips. Each record in the dataset is 
characterized by a geospatial coordinate corresponding to a driver's location at a per-second 
frequency (1Hz), along with various features related to the driver dynamics and behavior. The 
variables used, including those derived from the dataset, are listed in the first column of Table 1.  
 
The smartphone hardware sensors to collect the data involve the use of an accelerometer, gyroscope, 
magnetometer, and GPS, while data fusion techniques are provided by iOS and Android with nine 
degrees of freedom models (Yaw, Pitch, Roll), gravity, and linear acceleration (Kostopoulos et al., 
2024). Studies found that young drivers are more probable to choose the telematics-based insurance 
policy compared to older ones, raising concerns that the data may be skewed toward a younger 
demographic (Tselentis et al., 2018). 
 
Half of the features—SpeedingFlag, Mobile_usage, Harsh_acc, and Harsh_brk—are originally binary 
variables indicating whether the respective event occurred. Event_intensity reflects the intensity of 
harsh events on a scale from 1 to 3. Trips_count and Points_count represent the number of trips and 
individual data points associated with the spatial entity. Finally, smoothedSpeed indicates the 
vehicle’s speed at a specific coordinate point.  
 
Given the coverage of telematics, a bounding box was used to extract geometric features from OSM, 
resulting in a structured graph. Figure 2 illustrates a zoomed-in portion of this graph.  
From the defined graph in OSM, node and edge features were stored in two separate datasets, with 
the considered nodes being the "true" endpoints of edges (i.e., intersections or dead-ends) (Boeing, 
2024).  
 
GeoPandas library (GeoPandas, 2025) was used to aggregate telematics to the data, allowing spatial 
operations on geometric types.   
 
Common geometric types used to represent spatial data in GeoPandas are: 

 Point: Represents a single location in space. In our case study each record of the telematics 
data corresponds to a Point, as does each record in the Node dataset. 

 LineString: Represents a sequence of connected points forming a line. In our case study, the 
Edge dataset has a geometric representation defined as a LineString. 

 Polygon: Represents a closed shape defined by a sequence of points (with the first point being 
the same as the last), forming an area. When creating a buffer around a Point, the result will 
be a polygon geometry. 

 
Moreover, GeoPandas provides two spatial-join functions, both utilized in this study, to merge two 
geometric objects based on their spatial relationship: 

 GeoDataFrame.sjoin(): the function performs a spatial join based on specific spatial 

relationships (e.g., intersects, within, contains, etc.) between geometries. It is used in order to 

join based on the spatial relations of geometries (e.g., points within polygons). 

 GeoDataFrame.sjoin_nearest(): the function performs a spatial join based on proximity. It joins 

geometries from one GeoDataFrame to the nearest geometry in another GeoDataFrame.  
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While the first one was used to aggregate telematics data to the nodes after creating a buffer around 
the node coherently with what has been done in the field (Erramaline et al., 2022), (Stipancic et al., 
2019), the second one was used to aggregate telematics data to the edges.  
 
Aggregation is the process of combining things or amounts into a single group or total. 
Therefore, aggregating telematics data to spatial entities means combining individual telematics 
observations into summarized information organized by spatial features (like roads, intersections, 
zones). 
 
In the OSeven dataset, each telematics instance includes geographic coordinates, making it possible 
to link the data points to the corresponding geometric entities. This can be thought of as overlapping 
the telematics points onto the spatial network, and then aggregating them — for example, by 
summing, averaging, or applying other operations — per spatial entity. 
 
The aggregation to the edges is straightforward, performed by applying a spatial nearest-neighbor 
join, as mentioned before, between the telematics data points and the edges. In this procedure, each 
point is linked to the nearest edge based on the Euclidean distance between the two geometries, 
enabling the aggregation per single edge. 
 
Aggregation to the nodes is firstly achieved by performing a spatial join between the telematics data 
points and a 50-meter buffer zone created around each node in the network, following the literature 
(Petraki et al., 2020; Stipancic et al., 2019). The radius was stated to be helpful to avoid large, 
continuous overlaps, thus maintaining realistic conditions for the research. However, this simple 
approach requires further analysis.  
 
The buffer approach has a key drawback: it can distort the representation of the origin node if multiple 
nodes are present within the buffer.  
If multiple nodes lie within the buffer zone, issues in associating telematics data to the correct node 
might arise. This happens because the buffer includes nodes that are geographically close, however 
some telematics points are not directly relevant to the origin node but instead they affect other nodes 
within the buffer.  
 
Figure 2 provides an example of a buffer containing six nodes (i.e. intersections). The blue node 
represents the origin node from which the 50-meter buffer was generated, while the green and red 
dots are the telematics data points. 
The green dots represent points that fall on the edges directly connected to the origin node hence 
directly relevant to the origin node. The red dots are points within the buffer that are not located on 
edges directly connected to the origin, hence they do not have impact on the origin node, as they are 
not associated with its specific traffic flow. 
 
A further complication arises when choosing to aggregate telematics points solely by assigning them 
to their nearest node. This approach could lead to a case where some points are further than the 
buffer radius from the nearest intersection and thus falling outside the buffer and not being considered 
influencing for the node.  
 
Therefore, a mixed, more structured approach, is necessary to overcome these limitations. 
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Figure 2: Telematics Data Points and Buffers (Example). 

 
In addition, the simple buffer approach can create "isolated" nodes characterized by telematics data, 
while the outgoing edges from these nodes lack telematics. This occurs when the buffer covers 
several edges, however the edges directly connected to the origin node have no associated telematics 
data, while other edges within the buffer do, as shown in Figure 3. 
 
The figure illustrates the case where the main roads, which carry the traffic flow, are not connected 
to the origin node, whereas the roads connected to the buffer are actually empty due to the network 
structure. 
 

 
Figure 3: Isolated Node with Connected Edges Lacking Telematics Data (Example). 

 
Based on the previous observations, the buffer approach was refined by adding an additional 
constraint: telematics data points must not only fall within the buffer but also lie on the edges 
connected to the origin node. The following assumptions were made: 

 Within 50 meters of the origin buffer node, the driver influences its characteristics. Beyond 
this distance, there is no effect. 
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 The telematics points that influence the node must be located on the edges that intersect at 
the origin buffer node. 

 A point 𝑝 is located on the edge 𝑒, if and only if 𝑒 is the nearest edge to 𝑝.  

In Figure 2, the green points represent those points that satisfy these assumptions. 
 
The redefined approach leads to a new aggregated dataset, compared to the buffer-only approach. 
The two datasets were analyzed by first comparing their internal standard deviation. A lower standard 
deviation indicates data points more concentrated around the mean and hence an increased 
homogeneity in the dataset, vice versa a higher standard deviation, which indicates a more 
heterogeneous dataset. 
 
Another tool used to compare the two datasets is Principal Component Analysis (PCA), a technique 
used to reduce the dimensionality of a dataset, while preserving as much ‘variability’ (i.e. statistical 
information) as possible (Jolliffe & Cadima, 2016). PCA aims to create new variables that are linear 
functions of those ones in the original dataset, that successively maximize variance and that are 
uncorrelated with each other. This problem translates to solving an eigenvalue problem. 
Once these new variables (principal components) are identified, their importance can be defined by 
the explained variance which indicates how much of the data’s variability is persevered by each 
principal component. This information might be used for dimensionality reduction tasks, to reduce the 
number of features. 
 
Additionally, the Proportion of Variance Explained (PVE) for a single principal component 𝑚  is 
calculated as follows: 

𝑃𝑉𝐸𝑚 =
𝐸𝑉𝑚
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Where: 

 𝑛 is the number of observations. 

 𝑝 is the number of original features. 

 𝑥𝑖𝑗 is the value of the 𝑗-th original feature for the 𝑖-th observation. 

 ∅𝑗𝑚 is the loading of the 𝑗-th original variable on the 𝑚-th principal component, similar to a 

weight of the variable in forming the principal component. 

 𝑧𝑖𝑚 is the score of the 𝑖-th observation on the 𝑚-th principal component (i.e., the projection of 
the observation onto that component). It shows how much the observation matches along the 
principal component. 

 
The denominator is the total variance in the dataset aggregated across all the features and 

observations, whereas the numerator is the Explained Variance (EV) for the 𝑚 -th principal 
component, indicating how much variance is captured by that principal component. 
 
By examining the PVE across the principal components, insights into the data complexity can be 
gained. For instance, if one component explains most of the variability, the dataset has a simple 
structure with the data being concentrated along a single feature (Shlens, 2014), providing a 
reasonable characterization of the complete data set. On the other hand, if the PVE is evenly 
distributed across the components, it indicates a more homogeneous and complex structure of the 
dataset. 
 
Deep learning, a part of the broad field of Artificial Intelligence (AI), which focuses on the development 
of intelligent machines that have the ability to achieve goals like humans do (Sze et al., 2017), offers 
various tools, one of them is the Autoencoder (AE) (Chen & Guo, 2023). An AE takes an input vector 
𝑋 and then maps it to a hidden representation 𝑍 using a deterministic mapping process: 

𝑍 = 𝑓𝜃(𝑋) 
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The latent representation 𝑍, or the hidden representation, is then mapped back into a reconstruction 

vector 𝑋̂, with the same shape of 𝑋. The mapping is performed using a similar transformation: 

𝑋̂ = 𝑔∅(𝑍) 

Where 𝑓𝜃 and 𝑔∅ are two neural networks, called respectively encoder and decoder. The parameters 

𝜃 and ∅ refer to the learnable parameters in these networks.  

 
The goal of an AE is indeed to learn an efficient, compressed representation of data. The encoder is 
forced to map the input 𝑋 to a more compact representation, into a lower-dimensional latent space 𝑍. 

The latent representation 𝑍 is reconstructed by the decoder. This process enables dimensionality 
reduction while preserving the information of the input data. 
Mapping the input into a lower-dimensional space through AEs enables effective dimensionality 
reduction, with a key advantage: unlike PCA, AEs can capture non-linear relationships between input 
features, providing more flexibility (Michelucci, 2022). 
 
In the present analysis, the goal is to train an AE using the same architecture and hyperparameters 
on the two datasets built through different aggregation approaches. This aims to perform feature 
extraction and evaluate how well the model reconstructs the original inputs across the two datasets, 
by comparing the reconstruction errors and analyzing the loss curves, thereby assessing the 
capability of the autoencoder in learning a meaningful representation of the data in the latent code 
(Berahmand et al., 2024).   
The reconstruction error is calculated in terms of Mean Squared Error (MSE)(Michelucci, 2022): 

𝐿𝑀𝑆𝐸 = 𝑀𝑆𝐸 =
1

𝑀
∑ |𝑥𝑖 − 𝑥𝑖̂|

2

𝑀

𝑖=1

,         (𝟐) 

Where the symbol | · | indicates the norm of the vector which is the difference between the true value 

𝑥𝑖 and predicted value  𝑥𝑖̂ for the 𝑖-th observation in the dataset. 𝑀 is the number of observations in 
the training dataset. 

2.2 Results 

For this study, map data from OSM were extracted through OSMnx and processed. The data were 
collected by selecting a bounding box defined by the minimum and maximum latitude and longitude 
of the Central Unit Athens region, with an additional margin of 0.03 degrees. This results in two key 
datasets: an edge dataset, consisting of 100914 edges, and a node dataset, containing 63236 nodes. 
 
Telematics data were provided by OSeven Telematics, covering the last four months of 2024 within 
the previously defined area. After cleaning the dataset, this resulted in 10970875 per-second 
geospatial data points. The four-month collection period limits the ability to analyze seasonal effects, 
though weekly trends may still be examined. 
 
The Python function sjoin_nearest() was used to identify the nearest edge for each telematics data 
point in the OSeven dataset. The nearest spatial join gives as output a dataset with more rows than 
the original dataset, as some data points are equidistant to more than one edge. Therefore, each 
point is associated with all of its nearest edges, reflecting all possible connections between data points 
and their nearest edges. 
Under the assumption that the point has the same influence on all of its nearest edges, the dataset 
was left unchanged. This means that no differentiation was made among the multiple edges 
associated with the telematic data point, as its influence was assumed to be equal across all of them. 
Based on a unique key constructed from the OSM indexes in the edge database, the features were 
aggregated as presented in Table 1 resulting in a dataset of 49908 edges characterized by telematics 
data. 
 



Aggregating Telematics for Road Safety Analysis 8 

The Python function sjoin was used to identify the telematics data points falling within a 50 meters 
buffer originating around each node of the graph. The output is a dataset in which each telematics 
data point may appear multiple times, depending on the number of buffers it falls within. The features 
were aggregated again as presented in Table 1. This approach yields a dataset of 34886 nodes, 
hereafter referred to as DF1. 
By using the novel approach with the additional constraint previously described a second dataset of 
31924 nodes is generated, hereafter referred to as DF2. 
 
The non-telematics features were dropped from both DF and DF2, hence containing the same 
telematics features, shown below in Table 1: 
 

Table 1: Features in the Datasets 

Feature Description 

smoothenedSpeed Average speed of the influencing points. 

SpeedingFlag Total count of influencing points flagged for speeding. 

Mobile_usage Total count of influencing points flagged for mobile phone 
usage. 

Harsh_acc 
Harsh_brk 
Event_intensity 
Trips_count 
Points_count 

Total count of influencing points flagged for harsh acceleration. 
Total count of influencing points flagged for harsh braking. 
Average intensity of the harsh event (acceleration or braking). 
Total number of unique trips among the influencing points. 
Total number of unique points among the influencing points. 

 
DF1 and DF2 were evaluated in terms of standard deviation, the results are presented below in Table 
2. 
 

Table 2: Comparative Standard Deviation of Features Across the Two Datasets 

Feature Standard Deviation in DF1 Standard Deviation in DF2 

smoothenedSpeed 11.76 10.26 

SpeedingFlag 59.14 30.90 

Mobile_usage 50.07 26.64 

Harsh_acc 
Harsh_brk  
Event_intensity 
Trips_count 
Points_count 

3.68 
2.09 
0.81 

108.79 
1291.68 

1.96 
1.32 
0.75 

54.80 
657.37 

 
A reduction in the standard deviation for each feature was achieved with the new approach, leading 
to less dispersed data (Dodge, 1999). 
 
OSM provides the edge types in the form of column ‘highway’.  The edge types were manually 
encoded into three categories: rural, urban, and service. The node type was determined based on the 
most frequent edge type among those connected to each node. This work was useful to understand 
the difference between the entire dataset, the Urban scenario and the Rural scenario within the study 
area, by simply filtering the original entire dataset. Figure 4 shows the reduction obtained in terms of 
standard deviation per each dataset. 
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Figure 4: Standard Deviation Reduction Across Different Scenarios. 

 
The chart above illustrates how the dispersion of the data with our approach decreased for every 
feature. However, smoothenedSpeed, SpeedingFlag, Event_intensity and Trips_count benefit more 
from the in the urban scenario, whereas the remaining features in the rural scenario. 
 
PCA was used to understand how the data variance is distributed across the first 6 principal 
components. In Figure 5 the results are presented. 
 

 
Figure 5: PCA Explained Variance Comparison (Top 6 Components). 

 
The explained variance is more evenly distributed across the features for DF2, PCA suggests again 
DF2 being more homogeneous. Indeed, while for DF1 the first principal component (PC1) explains 
almost half of the variance in data, PC2, PC3, PC4, and PC5 contribute more evenly in DF2 than in 
DF1. This aligns with the idea that DF2 is more homogeneous. 
 
PCA has similar effects to autoencoders in terms of dimensionality reduction, however the 
autoencoder is more flexible than the PCA (Li et al., 2023).  
As previously mentioned, an autoencoder with the same architecture and hyperparameters was 
trained on both DF1 and DF2, to extract features and assess reconstruction quality. The architecture 
was tested with three different sizes of the encoding layer: 2, 4 and 6. This allows to assess better 
the reconstruction performance across varying levels of latent space dimensionality. 
 
Following guidance from related literature (Bengio, 2012), the hyperparameters for the training 
process were fixed as follows: the learning rate for the Adam optimizer was set to 0.005, the batch 
size was 64, the number of training epochs was 200, and early stopping patience was set to 8. 
Additionally, since the main goal is to reconstruct the input data, rather than on generalization to new 
data, the dataset was not split into training and test set. Instead, all the data were used during the 
training phase. 
Below the results for the three different sizes of the encoding layer are presented: 
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Figure 6: Reconstruction Error of the Autoencoder across varying Encoding Dimensions. 

 
The autoencoder outperforms on DF1 across all values of the latent dimension, which represents the 
compressed input data capturing its essential information. Indeed, the error in the reconstruction 
between the input and the output is smaller on DF1 than on DF2, hence the encoding of the hidden 
layer is a better representation of the input data (Li et al., 2023), when DF1 is used as input for the 
autoencoder. 
This indicates that DF1 is more suitable for reconstruction tasks, due to it featuring a simple pattern 
in the data.  
 
Despite DF1 showing higher variance in the data than DF2, it appears to have more learnable patterns 
and simpler relationships among the features, which were also seen in the PCA results. On the other 
hand, DF2 could be simply more diverse and complex, resulting from a better presentation of the 
node characteristics which has not been skewed by non-influential data points and contains fewer 
redundant data points. 
The novel approach captures real-world variability better, making it harder for the autoencoder to 
reconstruct it with the same level of precision, DF2 will most likely have more realistic, complex 
patterns. 

3. Discussion 

The present work proposes methods to merge telematics data, collected via a smartphone app, with 
spatial entities—specifically intersections and roads (referred to as nodes and edges in this study, 
following OSM terminology).  
The aggregation for the roads is straightforward as it involves finding the nearest road per each 
telematic data point and then summarizing the data at road level. The approach is believed to ensure 
a reliable representation of the data since it aggregates data based on their proximity and contextual 
relevance. 
The usual aggregation for the intersections is based on buffer zones, however this approach is too 
simplistic and it lacks the ability to represent accurately the intersection characteristics. 
A novel approach has been proposed that builds on the simple buffer method by introducing an 
additional constraint for better representation. The simple and the novel approach naturally result in 
two distinct aggregated datasets, from which conclusions about the data were drawn using three 
different tools: standard deviation metrics, PCA, and an autoencoder. The tools shed light on the data 
variability, the data overdispersion and data complexity. 
The dataset generated with the proposed approach, incorporating both a buffer and an additional 
constraint, exhibits less variability and lower overdispersion compared to the simpler buffer-based 
approach. Furthermore, it is more challenging to reconstruct using deep learning techniques, leading 
to the conclusion that it represents a more realistic dataset with more complex patterns. 
These observations, together with the underlying assumption introduced by the additional constraint 
in the dataset construction, support the interpretation that the dataset more accurately reflects real-
world driving behavior and spatial dynamics. It captures subtler relationships and interactions that are 
more difficult for the proposed models to approximate. 
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4. Conclusion 

Combining telematics data with spatial entities represents a crucial step in spatial analysis, as it 
enables the contextualization of dynamic driving behavior within the network where it happens, 
unlocking deeper insights into mobility patterns and road safety. 
The present work aims to show perspectives about the aggregation of telematics data to spatial 
entities, trying to move beyond simplistic methods by utilizing a more structured framework that 
represent traffic flow within the real-world environment in a refined way. When making key 
observations on the aggregation of telematics to roads and intersections, the aggregation to the 
intersections was evaluated using statistical and machine learning tools to assess the effectiveness 
of the novel 'buffer+constraint' approach compared to the simpler 'buffer' method. 
The tools revealed the new approach generate a dataset with lower variance, a more complex 
structure, and more challenging to reconstruct using deep learning methods, leading to the conclusion 
that it more faithfully represents real-world conditions. 
The limitations might primarily stem from the level of reasoning and detail presented. Future work can 
improve upon these ideas, considering additional perspectives and methodologies, or maybe 
expanding the dataset, particularly by extending the temporal coverage to enable seasonal analysis. 
Particularly, more advanced deep learning techniques such as Variational Autoencoder (Kingma & 
Welling, 2022) might be used or other useful techniques presented by (Li et al., 2023) could offer a 
deeper understanding of the data's nature when aggregated, with more robust findings.  
Lastly, the entire work is based on the buffer distance which was chosen to be 50 meters for the 
analysis, however exploring more distances could offer more insights. 
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